翻訳と辞書 |
Shimizu L-function : ウィキペディア英語版 | Shimizu L-function In mathematics, the Shimizu L-function, introduced by , is a Dirichlet series associated to a totally real algebraic number field. defined the signature defect of the boundary of a manifold as the eta invariant, the value as ''s''=0 of their eta function, and used this to show that Hirzebruch's signature defect of a cusp of a Hilbert modular surface can be expressed in terms of the value at ''s''=0 or 1 of a Shimizu L-function. ==Definition==
Suppose that ''K'' is a totally real algebraic number field, ''M'' is a lattice in the field, and ''V'' is a subgroup of maximal rank of the group of totally positive units preserving the lattice. The Shimizu L-series is given by :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Shimizu L-function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|